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Abstract
We study, within the tight-binding approximation, the electronic properties of a graphene
bilayer in the presence of an external electric field applied perpendicular to the system—a
biased bilayer. The effect of the perpendicular electric field is included through a parallel plate
capacitor model, with screening correction at the Hartree level. The full tight-binding
description is compared with its four-band and two-band continuum approximations, and the
four-band model is shown to always be a suitable approximation for the conditions realized in
experiments. The model is applied to real biased bilayer devices, made out of either SiC or
exfoliated graphene, and good agreement with experimental results is found, indicating that the
model is capturing the key ingredients, and that a finite gap is effectively being controlled
externally. Analysis of experimental results regarding the electrical noise and cyclotron
resonance further suggests that the model can be seen as a good starting point for understanding
the electronic properties of graphene bilayer. Also, we study the effect of electron–hole
asymmetry terms, such as the second-nearest-neighbour hopping energies t ′ (in-plane) and γ4

(inter-layer), and the on-site energy �.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The double-layer graphene system—the so-called bilayer
graphene (BLG)—is now a subject of considerable interest due
to its unusual properties [1–4], dissimilar to a great extent to
those of single-layer graphene (SLG) [5]. The integer quantum
Hall effect (QHE) is a paradigmatic case; characterized by
the absence of a plateau at the Dirac point [6], and hence
anomalous, it is associated with massive Dirac fermions and
two zero-energy modes [7].

One of the most remarkable properties of BLG is the
ability to open a gap in the spectrum by electric field effect—
biased BLG [7]. This has been shown both experimentally
and theoretically, providing the first semiconductor with an
externally tunable gap [8–17]. In the absence of an external

perpendicular electric field—unbiased BLG—the system is
characterized by four bands, two of them touching each
other parabolically at zero energy, and giving rise to the
massive Dirac fermions mentioned above, and the other two
separated by an energy ±t⊥. Hence, an unbiased BLG is a
two-dimensional zero-gap semiconductor [7, 6, 18]. At the
neutrality point the conductivity shows a minimum of the
order of the conductance quantum [6, 19–23, 18, 24, 25], a
property shared with SLG [26]. This prevents standard device
applications where the presence of a finite gap producing high
on–off current ratios is of paramount importance. The fact
that a simple perpendicular electric field is enough to open
a gap, and even more remarkable, to control its size, clearly
demonstrates the potential of this system for carbon-based
electronics use [27, 28].
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The biased BLG reveals interesting properties on its own.
The gap has been shown to be robust in the presence of
disorder [29–31], induced either by impurities or dilution,
but is completely absent in rotated (non-AB-stacked) bilayers,
where the SLG linear dispersion is recovered [32, 33]. The
band structure near the gap shows a ‘Mexican hat’ like
behaviour, with a low doping Fermi surface which is a
ring [11]. Such a topologically nontrivial Fermi surface
leads to an enhancement of electron–electron interactions,
and to a ferromagnetic instability at low enough density of
carriers [34, 35]. In the presence of a perpendicular magnetic
field, the biased BLG shows cyclotron mass renormalization
and an extra plateau at zero Hall conductivity, signalling the
presence of a sizable gap at the neutrality point [12, 10, 36].
Gaps can also be induced in stacks with more than two layers as
long as the stacking order is of the rhombohedral type [11, 14],
although screening effects may become important in doped
systems with increasing number of layers [15]. Recently, a
ferromagnetic proximity effect was proposed as a different
mechanism which can also open a gap in the spectrum of the
BLG, leading to a sizable magnetoresistive effect [37]. Strain
applied to the biased BLG has also shown to produce further
gap modulation [38].

In this paper the electronic properties of a biased BLG are
studied within a full tight-binding model, which enables the
analysis of the whole bandwidth, validating previous results
obtained using low energy effective models. The screening
of the applied perpendicular electric field is obtained within
a self-consistent Hartree approach, and a comparison with
experiments is provided. The effect of the bias in the cyclotron
mass and cyclotron resonance is addressed, and the results are
shown to agree well with experimental measurements.

The paper is organized as follows. In section 2 the
lattice structure of BLG and the tight-binding Hamiltonian
are presented; bulk electronic properties are discussed in
section 3, with particular emphasis on the screening correction;
the effect of a perpendicular magnetic field is studied in
section 4; section 5 contains our conclusions. We have also
included three appendices: appendix A provides details on
the calculation of the density asymmetry between layers for
a finite bias; in appendix B we give the analytical expression
for the biased BLG density of states, valid over the entire
energy spectrum; analytical expressions for the cyclotron mass
obtained within the full tight-binding model are given in
appendix C.

2. The model

Here we consider only AB Bernal stacking, where the top layer
has its A sublattice on top of sublattice B of the bottom layer.
We use indices 1 and 2 to label the top and bottom layer,
respectively. The unit cell of a bilayer has twice the number
of atoms of a single layer, and the basis vectors may be written
as a1 = a êx and a2 = a(êx − √

3 êy)/2, where a = 2.46 Å.
In the tight-binding approximation, the in-plane hopping

energy, t , and the inter-layer hopping energy, t⊥, define
the most relevant energy scales. The simplest tight-binding

Table 1. Tight-binding parameter values γ3 [41, 48], γ4 [41, 49, 48],
� [49, 50, 48], and t ′ [51], in units of the in-plane hopping t .

γ3 γ4 � t ′

0.03–0.1 0.04–0.07 0.005–0.008 ∼0.04

Hamiltonian describing non-interacting π -electrons in BLG
reads

HTB =
2∑

i=1

Hi + t⊥
∑

R,σ

[
a†

1,σ (R)b2,σ (R)+ h.c.
]+ HV , (1)

with the SLG Hamiltonian

Hi = −t
∑

R,σ

[
a†

i,σ (R)bi,σ (R)+ a†
i,σ (R)bi,σ (R − a1)

+ a†
i,σ (R)bi,σ (R − a2)+ h.c.

]
, (2)

where ai,σ (R) [bi,σ (R)] is the annihilation operator for
electrons at position R in sublattice Ai (Bi ), i = 1, 2, and
spin σ . The in-plane hopping t can be inferred from the Fermi
velocity in graphene vF = tah̄−1

√
3/2 ≈ 106 ms−1 [39],

yielding t ≈ 3.1 eV, in good agreement with what is found
experimentally for graphite [40]. This value also agrees with
a recent Raman scattering study of the electronic structure
of BLG [41]. As regards the inter-layer hopping t⊥, angle-
resolved photoemission spectroscopy (ARPES) measurements
on epitaxial BLG give t⊥ ≈ 0.43 eV [8], and Raman
scattering for BLG obtained by micromechanical cleavage
of graphite yields t⊥ ≈ 0.30 eV [41]. The experimental
value for bulk graphite is t⊥ ≈ 0.39 eV [42], which means
that for practical purposes we can always assume t⊥/t ∼
0.1 � 1. These values for t and t⊥ compare fairly well
with what is obtained from first-principles calculations for
graphite [43] using the well established Slonczewski–Weiss–
McClure (SWM) parametrization model [44, 45] to fit the
bands near the Fermi energy. The SWM model assumes extra
parameters that can also be incorporated in a tight-binding
model for BLG, namely, the inter-layer second-NN hoppings
γ3 and γ4, where γ3 connects different sublattices (B1–A2) and
γ4 equal sublattices (A1–A2 and B1–B2). Additionally, there
is an on-site energy � reflecting the inequivalence between
sublattices A1,B2 and B1,A2—the former project exactly on
top of each other while the latter lie on the hexagon centre
of the other layer. The consequences of these extra terms
for the band structure obtained from (1) are well known:
γ3 induces trigonal warping and both γ4 and � give rise to
electron–hole asymmetry [46, 7, 47]. The in-plane second-NN
hopping energy t ′ is not considered in the usual tight-binding
parametrization of the SWM model. Nevertheless, this term
can have important consequences since it breaks particle–hole
symmetry but does not modify the Dirac spectrum. Typical
values are given in table 1 as obtained in recent experiments,
except for t ′ quoted from density functional theory (DFT)
calculations.

We are interested in the properties of BLG in the presence
of a perpendicular electric field—the biased BLG. The effect
of the induced energy difference between layers, parametrized

2
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by V , may be accounted for by adding HV , the last term in (1),
with HV given by

HV = V

2

∑

R,σ

[
nA1(R)+ nB1(R)− nA2(R)− nB2(R)

]
, (3)

where nAi (R) and nBi (R) are number operators.

3. Bulk electronic properties

Introducing the Fourier components ai,σ,k and bi,σ,k of
operators ai,σ (R) and bi,σ (R), respectively, with the layer
index i = 1, 2, we can rewrite (1) as H = ∑

k,σ ψ
†
σ,k Hkψσ,k,

where ψ†
σ,k = [a†

1,σ,k, b†
1,σ,k, a†

2,σ,k, b†
2,σ,k] is a four-component

spinor, and Hk is given by

Hk =
⎛

⎜⎝

V/2 −tsk 0 −t⊥
−ts∗

k V/2 0 0
0 0 −V/2 −tsk

−t⊥ 0 −ts∗
k −V/2

⎞

⎟⎠ . (4)

The factor sk = 1+eik·a1+eik·a2 determines the matrix elements
for the SLG Hamiltonian in reciprocal space (t⊥ = 0, V = 0),
from which the SLG dispersion is obtained, εk = ±t|sk|. The
resultant conduction (+) and valence (−) bands touch each
other in a conical way at the corners of the first Brillouin zone
(BZ), the K and K′ points [5]. This touching occurs at zero
energy, the Fermi energy for undoped graphene. The four-
band continuum approximation for (4), valid at energy scales
E � t , may be obtained by introducing the small wavevector
q which measures the difference between k and the corners of
the BZ. Linearizing the factor sk around the K points we can
rewrite (4) as

HK =
⎛

⎜⎝

V/2 vF pe−iϕp 0 −t⊥
vF peiϕp V/2 0 0

0 0 −V/2 vF pe−iϕp

−t⊥ 0 vF peiϕp −V/2

⎞

⎟⎠ , (5)

where p = h̄q and ϕp = tan−1(py/px). Around the K′
points, (5) with complex conjugate matrix elements defines
HK′ [52, 7].

Equation (5) can be further simplified if one assumes
vF p, V � t⊥. By eliminating high energy states perturbatively
we can write a two-band effective Hamiltonian describing low
energy states whose electronic amplitude is mostly localized on
B1 and A2 sites. Near the K points the resulting Hamiltonian
may be written as

Heff = −
( −V/2 ei2ϕpv2

F p2/t⊥
e−i2ϕpv2

F p2/t⊥ V/2

)
, (6)

whereas the complex conjugate matrix elements should be
taken for a low energy description around the K′ points.
The two-component wavefunctions have the form 	 =
(φB1, φA2) [52, 7, 53].

In the following we discuss the electronic structure
resulting from the tight-binding Hamiltonian (4), and comment
on the approximations given above by (5) and (6).

Figure 1. (a) Solution of (8) for V = t⊥/2, 2t⊥, 4t⊥. (b)�g versus V
for various t⊥ values. Energy is given in units of t and momentum in
units of a−1.

3.1. The electronic structure

Let us briefly discuss the electronic structure of the biased BLG
using the full tight-binding Hamiltonian given by (1). The
spectrum of (1) for V 	= 0 reads

E±±
k (V ) = ±

√

ε2
k + t2

⊥
2

+ V 2

4
±
√

t4
⊥/4 + (t2

⊥ + V 2)ε2
k.

(7)
As can be seen from (7), the V = 0 gapless system turns into a
semiconductor with a gap controlled by V . Moreover, the two
bands close to zero energy are deformed near the corners of
the BZ [5], so the minimum of |E±−

k (V )| no longer occurs at
these corners. As a consequence, the low doping Fermi surface
is completely different from the V = 0 case, with its shape
controlled by V .

It can be readily shown that the minimum of sub-band
E+−

k (V ) (or equivalently, the maximum of E−−
k (V )) occurs

for all ks satisfying

ε2
k = α(V , t⊥), (8)

with α(V , t⊥) = (V 4/4 + t2
⊥V 2/2)/(V 2 + t2

⊥)—note that
∂E±−

k /∂εk = 0 at the desired extrema. Equation (8)
has solutions for

√
α � 3t (3t is half of the single-layer

bandwidth). When
√
α > 3t , the minimum of E+−

k (V ) occurs
at the  point. Figure 1(a) shows the solution of (8) around
the K point for V = t⊥/2, 2t⊥, 4t⊥ (around the K′ point the
figure is rotated by π/3). At low doping the Fermi sea acquires
a line shape given by the solution of (8), the linewidth being
determined by the doping level. As can be seen in figure 1(a),
when V < t⊥ the Fermi sea approaches a ring, the Fermi ring,
centred at the BZ corners [11, 34]. As V is increased there is an
apparent trigonal distortion showing up, which originates from
the single-layer dispersion in (8).

The existence of a Fermi ring is easily understood using
the continuum version of (7), i.e., the eigenvalues of (5). This
amounts to substituting the single-layer dispersion in (7) by
vF p, which immediately implies cylindrical symmetry around
K and K′. If we further assume that vF p � V � t⊥
holds, then (7) is well approximated by the ‘Mexican hat’
dispersion [11],

E±−(V ) ≈ ± V

2
∓ V v2

F

t2
⊥

p2 ± v4
F

t2
⊥V

p4, (9)

3
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Figure 2. (a) Biased BLG devices. (b) n versus Vg for the left device shown in (a): experimental data are shown as symbols [10]; the line is a
linear fit with (14). (c) V versus n for the right BLG device shown in (a): symbols are experimental data from [8]; the lines are the result
from (16).

which explains the Fermi ring. If, instead, we have V <

vF p � t⊥, we can approximate (7) by

E±−(V ) ≈ ±
√

V 2/4 + v4
F p4/t2

⊥, (10)

which corresponds exactly to the eigenvalues of the effective
two-band Hamiltonian in (6). Note that no continuum
approximation can produce the trigonal distortion shown in
figure 1(a).

The gap between conduction and valence bands, �g, is
twice the minimum value of E+−

k (V ) due to electron–hole
symmetry, and is given by

�g =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

√
t2
⊥V 2/(t2

⊥ + V 2), V � Vc

2t

√√√√
9 + t2

⊥
2t2

+ V 2

4t2
−
√

t4
⊥

4t4
+ 9

t2
⊥ + V 2

t2
,

V > Vc,

(11)

where Vc = [18t2 − t2
⊥ + (182t4 + t4

⊥)1/2]1/2 � 6t , the
approximation being valid for t⊥ � t . From (11) it can be seen
that for both V � t⊥ and V � t one finds �g ∼ V . However,
there is a region for t⊥ � V � 6t where the gap shows a
plateau �g ∼ t⊥, as depicted in figure 1(b). The plateau ends
when V � 6t (not shown).

3.2. Screening of the external field

So far we have considered V , i.e. the electrostatic energy
difference between layers felt by a single electron, as a band
parameter that controls the gap. However, the parameter V
can be related to the perpendicular electric field applied to the
BLG, avoiding the introduction of an extra free parameter in
the present theory.

Let us call E = E êz the perpendicular electric field felt
by electrons in BLG. The corresponding electrostatic energy
U(z) for an electron of charge −e is related to the electric field
as eE = ∂U(z)/∂z, and thus V is given by

V = U(z1)− U(z2) = eEd, (12)

where z1 and z2 are the positions of layers 1 and 2, respectively,
and d ≡ z1 − z2 = 3.4 Å is the inter-layer distance. Given
the experimental conditions, the value of E can be calculated
under a few assumptions, as detailed in the following.

3.2.1. The external field in real systems. If we assume the
electric field E in (12) to be due exclusively to the external
electric field applied to the BLG, E = Eext, all we need in
order to know V is the value of Eext,

V = eEextd. (13)

The experimental realization of a biased BLG has been
achieved in epitaxial BLG through chemical doping [8, 54] and
in back gated exfoliated BLG [10, 9]. In either case the value of
Eext can be extracted assuming a simple parallel plate capacitor
model.

In the case of exfoliated BLG, devices are prepared by
micromechanical cleavage of graphite on top of an oxidized
silicon wafer (300 nm of SiO2), as shown in the left panel
of figure 2(a). A back gate voltage Vg applied between the
sample and the Si wafer induces charge carriers due to the
electric field effect, resulting in carrier densities ng = βVg

relatively to half-filling (ng > 0 for electrons and ng < 0 for
holes). The geometry of the resulting capacitor determines
the coefficient β . In particular, the electric field inside the
oxidized layer is Eox = eng/(εSiO2ε0), where εSiO2 and ε0 are
the permittivities of SiO2 and free space, respectively. This
implies a gate voltage Vg = engt/(εSiO2ε0), from which we
obtain the coefficient β = εSiO2ε0/(et). For a SiO2 thickness
t = 300 nm and a dielectric constant εSiO2 = 3.9 we obtain
β ∼= 7.2 × 1010 cm−2 V−1, which is in agreement with the
values found experimentally [39, 55, 6]. In order to control
independently the gap value and the Fermi level, in [10] the
devices have been chemically doped by deposition of NH3

on top of the upper layer, which adsorbed on graphene and
effectively acted as a top gate providing a fixed electron density
n0 [56]. Charge conservation then implies a total density n in
BLG given by n = ng + n0, or in terms of the applied gate

4
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voltage,
n = βVg + n0. (14)

In figure 2(b) the charge density in BLG is shown as a
function of Vg. The symbols are the experimental result
obtained from Hall effect measurements [10], and the line is
a linear fit with (14). The fit provides n0, which for this
particular experimental realization is n0 � 1.8 × 1012 cm−2,
and validates the parallel plate capacitor model applied to
the back gate, since the fitted β � 7.2 × 1010 cm−2 V−1 is
in excellent agreement with the theoretical value. Extending
the parallel plate capacitor model to include the effect of
dopants, the external field Eext is the result of charged surfaces
placed above and below BLG. The accumulation or depletion
layer in the Si wafer contributes with an electric field Eb =
eng/(2εrε0), while dopants above BLG effectively provide the
second charged surface with electric field Et = −en0/(2εrε0).
A relative dielectric constant εr different from unity may be
attributed to the presence of SiO2 below and vacuum on top,
which gives εr ≈ (εSiO2 + 1)/2 ≈ 2.5, a value that can be
slightly different due to adsorption of water molecules [56, 57].
Adding the two contributions, Eext = Eb + Et, and making use
of the charge conservation relation, we arrive at an electrostatic
energy difference V (see (13)) that depends linearly on the
BLG density,

V =
(

n

n0
− 2

)
e2n0d

2εrε0
. (15)

In treating the dopants as a homogeneous charged layer
we ignore possible lattice distortion induced by adsorbed
molecules, as well as the electric field due to the NH3 electric
dipole, which may contribute to the gap in the spectrum.
However, it has been shown recently [58] that for NH3 these
effects counteract, giving rise to a much smaller gap than
other dopant molecules [59], for instance NH2 and CH3. For
the biased BLG realized in [9], independence of the Fermi
level and carrier density was achieved with a real top gate,
which makes the parallel plate capacitor model a suitable
approximation in that case.

In the case of epitaxial BLG, devices are grown on SiC
by thermal decomposition of the Si face. (For the C face, the
presence of rotational stacking faults prevents the usual AB
Bernal stacking [60, 33].) The substrate is fixed (SiC), and
graphene behaviour develops for carbon layers above the buffer
layer [61–64], as schematically shown in the right panel of
figure 2(a). Due to charge transfer from substrate to film, the
as-prepared BLG devices appear electron doped with density
na. First-principles calculations indicate that such doping is
coming from interface states that develop between the buffer
layer and the Si-terminated substrate [61, 62]. (Scanning
tunnelling microscopy (STM) measurements corroborate the
presence of interface states [65–67, 64].) From the point
of view of our theoretical approach, we may interpret these
interface states as an effective depletion layer that provides
the external electric field necessary to make the system a
biased BLG. In [8] the BLG density n was varied by doping
the system with potassium (K) on top of the upper layer
(see figure 2(a)), which originates an additional charged layer
contributing to the external electric field. Applying the same

parallel plate capacitor model as before, we get an electrostatic
energy difference that can be written as

V =
(

2 − n

na

)
e2nad

2εrε0
. (16)

Following a similar reasoning to that of the case of exfoliated
graphene on top of SiO2, we would write εr ≈ (εSiC +
1)/2 ≈ 5. However, this value neglects that interface
states (the effective bottom plate capacitor) occur above
the SiC substrate, close to the graphene system, and thus
εr ≈ 1 should be more appropriate. In figure 2(c) we
compare (16) with experimental results for V obtained by
fitting ARPES measurements from [8]. For this particular
biased BLG realization, the as-prepared carrier density was
na ≈ 1013 cm−2. From (16) this na value implies a zero V , i.e.,
zero electric field and therefore zero gap, for the bilayer density
nth ≈ 2 × 1013 cm−2. Experimentally, a zero gap was found
around nexp ≈ 2.3 × 1013 cm−2. Given the simplicity of the
theory, it can be said that nth and nexp are in good agreement.
However, the agreement is only good at V ∼ 0, since the
measured V is not a linear function of n, as (16) implies. In
what follows we analyse in detail the effect of screening and
how it modifies (15) and (16).

3.2.2. The screening correction. In deriving (15) and (16)
we assumed that the electric field E in the BLG region was
exactly the external one, Eext. There is, however, an obvious
additional contribution: the external electric field polarizes
the BLG, inducing some charge asymmetry between the two
graphene layers, which in turn gives rise to an internal electric
field, Eint, that screens the external one.

To estimate Eint we can again apply a parallel plate
capacitor model. The internal electric field due to the charge
asymmetry between planes may thus be written as

Eint = e�n

2εrε0
, (17)

where −e�n is the induced charge imbalance between
layers, which can be estimated through the weight of the
wavefunctions in each layer,

�n = n1 − n2 = 2

Nc A�
∑

j,l=±

∑

k

′

(|ϕ jl
A1,k|2 + |ϕ jl

B1,k|2 − |ϕ jl
A2,k|2 − |ϕ jl

B2,k|2
)
, (18)

where the factor 2 comes from spin degeneracy, Nc is the
number of unit cells and A� = a2

√
3/2 is the unit cell area,

j l is a band label, and the prime sum runs over all occupied ks
in the first BZ. The amplitudes ϕ jl

Ai,k and ϕ jl
Bi,k, with i = 1, 2,

are determined by diagonalization of (4), enabling �n to be
written as

�n = 2

Nc A�
∑

j,l=±

∑

k

′

(ε2
k + K jl

k,−)(ε
2
k − K jl

k,+)2 − (ε2
k + K jl

k,+)t
2
⊥K jl

k,−
(ε2

k + K jl
k,−)(ε2

k − K jl
k,+)2 + (ε2

k + K jl
k,+)t2

⊥K jl
k,−
, (19)

5



J. Phys.: Condens. Matter 22 (2010) 175503 E V Castro et al

Figure 3. ((a), (b)) Respectively, screened electric field and charge imbalance versus Eext at half-filling; the insets show the effect of changing
n at fixed Eext = 0.3 V nm−1, signalled by the (blue) dot in the main panels. (c) V versus n for the BLG device shown in the right panel of
figure 2(a): symbols are experimental data from [8]; lines are the result from (21) for εr = 1; the effect of changing εr = 1 − 5 is shown in the
inset. (d) Gap versus n for the BLG device shown in the left panel of figure 2(a) with t⊥ � 0.22 eV and εr = 1; the left inset compares the
n0 = 5.4 × 1012 cm−2 result for εr = 1 (green dashed–dotted) with εr = 2 (blue full line); the right inset shows the n0 = 5.4 × 1012 cm−2

result for the screened V given by (20) (dashed–dotted line) and for the unscreened V given by (15) (full line). We used as the in-plane
hopping t � 3 eV.

where εk is the SLG dispersion, and K jl
k,± = (V/2 ± E jl

k )
2

with E jl
k given by (7). Taking the limit Nc → ∞, it is

possible to write (19) as an energy integral weighted by the
density of states of SLG, as described in appendix A. What
is important to note is that in order to calculate �n we must
specify V , which in turn depends on �n through (17). Thus,
a self-consistent procedure must be followed. In particular, for
the two experimental realizations of biased BLG discussed in
section 3.2.1, the self-consistent equation that determines V
reads: in the case of exfoliated BLG [10],

V =
[

n

n0
− 2 + �n(n, V )

n0

]
e2n0d

2εrε0
; (20)

in the case of epitaxial BLG [8],

V =
[

2 − n

na
+ �n(n, V )

na

]
e2nad

2εrε0
. (21)

The self-consistent electric field E = Eext + Eint in the
BLG region, with Eint given by (17) for εr = 1, is shown at
half-filling as a function of Eext in figure 3(a). The screened
E is approximately a linear function of Eext, with a constant
of proportionality that depends on the specific value of t⊥.
Increasing t⊥ leads to an increased screening, which can be
understood as due to an increased charge imbalance between
layers, as shown in figure 3(b). The highly non-linear effect

of inducing a finite carrier density (n 	= 0) can be seen in
the insets of figures 3(a) and (b), for t⊥ = 0.1t and Eext =
0.3 V nm−1.

As a validation test of the present self-consistent
treatment, we compare (21) with experimental results for
V obtained by fitting ARPES measurements from [8], as
mentioned in section 3.2.1. The result is shown in figure 3(c).
Clearly, the self-consistent V given by (21) for εr = 1 is a
much better approximation than the unscreened result of (16)
(see figure 2(c)). The best fit is obtained for εr ∼ 1–2, as can be
seen in the inset of figure 3(c). The value εr ≈ (εSiC+1)/2 ≈ 5
is too high, possibly because the bottom capacitor plate is,
indeed, due to interface states, and therefore is not buried
inside the SiC substrate [61, 62, 65]. Note, however, that the
dielectric constant εr may effectively be tuned externally, as
recently shown for SLG by adding a water overlayer in an
ultra-high vacuum [68]. In figure 3(d) we show the gap �g

as a function of the carrier density n for the biased BLG device
shown in the left panel of figure 2(a), with realistic values
of the chemical doping n0 [10]. The gap is given by (11),
with t⊥ � 0.22 eV [10] and V obtained by solving self-
consistently (20) for εr = 1. Note that for Eext = 0 we
always have Eint = 0 (the charge imbalance must be externally
induced), and therefore we also have V = 0 and �g = 0. For
this particular biased BLG device the present model predicts
Eext = 0 for n = 2n0, which explains the asymmetry for �g

versus n shown in figure 3(d).
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Figure 4. (a) Screened V versus n for the BLG system shown in the left panel of figure 2(a) computed within three different approaches (see
the text): full tight-binding (TB), the four-band approximation, and the two-band approximation. Three different chemical dopings have been
considered, n0 = {0, 1.8, 5.4} × 1012 cm−2. The inset shows a zoom around V = 0 for n0 = {0, 1.8} × 1012 cm−2. ((b)–(d)) Screened gap
versus n obtained using V shown in (a) for n0 = {0, 1.8, 5.4} × 1012 cm−2, respectively. Parameters: t � 3 eV, t⊥ � 0.22 eV, and εr = 1.

The most important characteristic of such devices, from
the point of view of applications, is the maximum size of
the gap which could be induced. The maximum �g occurs
when Vg reaches its maximum, which occurs just before
the breakdown of SiO2. The breakdown field for SiO2 is
�1 V nm−1, meaning that Vg values as high as 300 V are
possible for the device shown in the left panel of figure 2(a).
From (14) we see that Vg � ±300 V implies n − n0 �
±22 × 1012 cm−2, and therefore figure 3(d) nearly spans the
interval of possible densities. It is apparent, especially for n0 =
5.4 × 1012 cm−2, that when the maximum allowed densities
are reached the gap seems to be approaching a saturation limit.
This saturation is easily identified with the plateau shown in
figure 1(b) for �g versus V , occurring for V � t⊥. We
may then conclude that such devices enable the entire range of
allowed gaps (up to t⊥) to be accessed—as has been shown in
very recent experiments [16, 17]. The effect of using a different
dielectric constant (εr = 2) is shown as a full line in the left
inset of figure 3(d), and the result for the unscreened case in
the right inset, both for n0 = 5.4 × 1012 cm−2. The former
makes the gap slightly smaller, and the latter slightly larger,
but the main conclusions remain.

3.2.3. Screening in continuum models. The self-consistent
Hartree approach considered in the previous section has been
applied to the full tight-binding Hamiltonian given in (1). Here
we compare the results for the potential difference V and gap
�g when the screening correction is used within the continuum
approximation, either for the four-band model (5) or for the
two-band model (6). This self-consistent Hartree approach in
the continuum has been followed in [27, 12].

In the case of the four-band model, �n is still
given by (19) with the substitutions εk → vF p and

2
Nc A�

∑
j,l=±

∑′
k → 2

π h̄2

∑′
j,l=±

∫ p2

p1
dp p, where the prime

on the right-hand summation means a sum over total or
partially occupied bands. Depending on the band in question
and the value of the Fermi energy EF, the limits of integration
are p1, p2 = {0, p±,�}, where

vF p± =
√

E2
F + V 2/4 ±

√
E2

F(V
2 + t2

⊥)− t2
⊥V 2/4, (22)

and � is a BZ cut-off that can be chosen such that
4π
h̄2

∫ �
0 dp p = 4π2

A� ⇔ � = h̄
√
π/A�. As regards the gap

�g, in the four-band model it is still given by (11).
For the two-band model case, the charge imbalance can

be written as an integral in momentum space of the function
|φB1|2 − |φA2|2 = ±V/(V 2 + 4v4

F p4/t2
⊥)1/2, where 	 =

(φB1, φA2) is the two-component wavefunction obtained by
diagonalizing (6). The ± signs stand for the contribution of
valence and conduction bands, respectively. In particular, at
half-filling the charge imbalance is given by

�n1/2 � − t⊥V

2πv2
Fh̄2 ln

(
2t⊥/|V | +

√
4t2

⊥/V 2 + 1
)
, (23)

where we have included a factor of 4 to account for both
spin and valley degeneracies. The BZ cut-off � has been
chosen such that vF� = t⊥ [12]. Since in the two-band
model it is assumed that V � t⊥ holds we can write �1/2 ≈
−t⊥V/(2πv2

Fh̄2) ln(4t⊥/|V |), which, from (17), leads to the
logarithmic divergence of the screening ratio at small external
electric field, Eext/E ∼ − ln E , as mentioned in [13]. For a
general filling n the charge imbalance reads

�n ≈ t⊥V

2πv2
Fh̄2 ln

(
v2

Fh̄2π |n|
2t2

⊥
+
√
v4

Fh̄4π2n2

4t4
⊥

+ 1

)
, (24)

where the charge density is given in terms of the Fermi
wavevector as n = ±p2

F/(π h̄2). Inserting (24) into (20) or (21)
we get the expression for V in the two-band approximation,
which is exactly the gap in the two-band model,�g = |V |.

In figure 4(a) the electrostatic energy difference between
planes obtained, V , is shown for the three different approaches
discussed above. The full (black) lines stand for the full
tight-binding result, with V given by (20) and the charge
imbalance �n by (19). The result obtained in the four-band
approximation is shown as dashed (red) lines. It can hardly
be distinguished from the full tight-binding result, even when
the chemical doping n0 is as high as 5.4 × 1012 cm−2 (see
the figure caption). In fact, the only prerequisite for the
continuum four-band approximation (5) to hold is that |EF| �
t , which is always realized for the available BLG devices.
As regards the two-band approximation model, we show as
dotted (blue) lines the self-consistent result for V , obtained

7
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for �n as in (24). Clearly, it is only when both the bilayer
density n and the chemical doping n0 are small enough for
the relation |EF|, V � t⊥ to hold that the two-band model is
a good approximation (see the inset). The same conclusions
apply to the behaviour of the gap �g as a function of the
carrier density n, which is shown in panels 4(b)–(d) for n0 =
{0, 1.8, 5.4} × 1012 cm−2, respectively. The failure of the two-
band model in the presence of interactions was also observed
in Hartree calculations of the electron compressibility [69].

3.2.4. Electron–hole asymmetry. As we have seen in
sections 3.2.1 and 3.2.2, the two biased BLG devices shown
in figure 2(a) have zero gap when the carrier density is
twice the system’s chemical doping. The closing of the
gap at a finite density induces an electron–hole asymmetric
behaviour in the system, where obvious examples are the gap
�g and the electrostatic energy difference between layers V , as
shown in figures 2(d) and 4(a). An experimental confirmation
for this electron–hole asymmetric behaviour comes from
measurements of the cyclotron mass in the biased BLG device
shown in the left panel of figure 2(a) [10] (discussed in more
detail in section 4.1). However, real electron–hole asymmetry
can also be present in BLG due to extra hopping terms, as
mentioned in section 2. Here we study how �g and V are
affected by the electron–hole symmetry breaking terms t ′, γ4,
and �, taking into account the screening correction.

Inclusion of in-plane second-NN hopping t ′ leads to a
generalized version of (4), which can be written as Hk,t ′ =
Hk − (ε2

kt ′/t − 3t ′)1, where Hk is given by (4), εk is the SLG
dispersion, and 1 is the 4 × 4 identity matrix. The generalized
BLG dispersion, either biased or unbiased, is given by the t ′ =
0 result added by −ε2

kt ′/t +3t ′, which clearly breaks electron–
hole symmetry. Note that a finite t ′ has no influence on the
wavefunction amplitude. Therefore, the integrand in (18)—
the definition of the charge carrier imbalance between layers
�n—is independent of t ′. We have found numerically, using
a four-band continuum model, that neither the screened V nor
the gap �g is affected by t ′, although the gap becomes indirect
for finite t ′. This means that the structure of occupied ks is
insensitive to t ′, and thus �n in (18) is fully t ′ independent,
at least as long as EF � t . Even though the presence of t ′
can lead to the suppression of the Mexican hat in the valence
band, this only happens for |V | < t2

⊥t ′ ∼ 10−3t . For such a
small |V | value the Mexican hat plays an irrelevant role. The
band structure around the K point for t ′ = 0.1t (solid line)
and t ′ = 0 (dashed line) can be seen in figure 5(a) for typical
parameter values.

Now we turn to the effect of the inter-layer second-NN
hopping γ4. The generalized version of (4) for finite γ4, which
we call Hk,γ4 , can be obtained by replacing the null entries (A1,
A2) and (B1, B2) by γ4s∗

k and (A2, A1) and (B2, B1) by γ4sk.
The associated eigenproblem admits an analytic treatment at
low energies and small biases vF p, V � t⊥ [52], but as has
been seen previously, V ∼ t⊥ is possible in real systems.
Therefore, we analyse the problem numerically using a four-
band continuum approximation. The matrix Hamiltonian Hk,γ4

may then be written as HK,γ4 = M† H̃K,γ4 M near the K points,
with M = diag[1, eiϕp, e−iϕp , 1], and H̃K,γ4 obtained from (5)

Figure 5. ((a), (b)) Band structure around K for the biased BLG with
t ′ = 0.1t and γ4 = 0.1t , respectively, for V = t⊥ = 0.1t . Dashed
lines: t ′ = γ4 = 0. ((c), (d)) Respectively, V versus n and �g versus
n for the BLG device shown in the left panel of figure 2(a), modelled
with a finite γ4. Parameters: t � 3 eV, t⊥ = 0.1t , γ4 = 0.1t , εr = 1,
and n0 = {0, 1.8} × 1012 cm−2. Dashed lines: t ′ = γ4 = 0.

with ϕp = 0 and the null entries (A1, A2), (B1, B2), (A2, A1),
and (B2, B1) replaced by −v4 p, where v4 = γ4ah̄−1

√
3/2 �

105 m s−1. The canonical transformation defined by M clearly
shows that the problem still has cylindrical symmetry in the
continuum approximation. Around the K′ points we have
HK ′,γ4 = M H̃K,γ4 M†. The band structure obtained for γ4 =
0.1t (solid lines) and γ4 = 0 (dashed lines) is shown in
figure 5(b) for typical parameter values. Note that, even though
the gap becomes indirect for γ4 	= 0, we still have E p=0 =
{±V/2,±

√
t2
⊥ + V 2/4} as in the γ4 = 0 case. The screened

electrostatic energy difference between layers V for the biased
BLG device shown in the left panel of figure 2(a) is shown as
a function of the carrier density in figure 5(c). The result for V
has been obtained by solving (20) with carrier imbalance �n
given by the continuum version of (18), with wavefunctions
obtained numerically through H̃K,γ4 for γ4 = 0.1t (see the
figure caption for other parameter values). The corresponding
screened gap �g is shown in panel 5(d). The γ4 = 0 result
is also shown as a dashed line for both V and �g. The
effect of γ4 may clearly be considered small, even for such
a large value as γ4 � 0.3 eV. However, electronic properties
which are particularly sensitive to the changes of the Fermi
surface (for instance, the cyclotron mass) may, in principle, be
measurably affected by γ4. We will come back to this point in
section 4.1.

As regards the on-site energy �, since it is smaller than
γ4 (see section 2) we consider their simultaneous effect. The
additional term in the Hamiltonian adds to the matrix Hk,γ4

the contribution diag[�, 0, 0,�], and therefore the four-band
continuum approximation for finite γ4 and � may be written
as H̃K,γ4,� = H̃K,γ4 +diag[�, 0, 0,�], where we use the same
transformation M as was introduced above. Similarly to the γ4

case, the effect of � is negligible for both V and �g.
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3.3. The DOS and LDOS

Insight into the electronic properties of biased (and unbiased)
BLG can also be achieved by studying the density of states
(DOS) and the local DOS (LDOS) of the system. In particular,
the LDOS can be accessed through scanning tunnelling
microscopy/spectroscopy measurements [70], providing a
useful way to validate theoretical models. On the other hand,
the knowledge of the DOS turns out to be very useful for
practical purposes, as it provides a way to relate the Fermi
energy EF and the carrier density n in the system: |n| =∫ |EF|

0 dE ρ2(E), where ρ2(E) stands for the BLG DOS.
We have computed the analytical expression for the DOS

of BLG, valid over the entire energy spectrum and for zero
and finite bias. The expression is given in appendix B. As
regards the LDOS, the results have been obtained using the
recursive Green’s function method [71]. The DOS and LDOS
of unbiased BLG have been obtained previously within the
effective mass approximation in [72]. The effect of disorder
on the DOS and LDOS of BLG, both biased and unbiased, has
also been studied recently [18, 29, 30, 72, 73, 31].

The DOS (full line) and LDOS (dashed and dash–dotted
lines) for the biased BLG are shown in figures 6(a) and (b)
for V = 0.05t . The asymmetry among the four sublattices is
evident, in particular between sites B1 and A2, and between
A1 and B2, which are equivalent in the unbiased system. Note
that close to the gap edges the states corresponding to positive
energies have a larger amplitude at B1 sites, while those
corresponding to negative energies have a larger amplitude
at A2 sites. This behaviour agrees with the observation
that B1 and A2 are the low energy active sites (the basis
for the two-band model), and it also reflects our choice of
electrostatic energies in (3): +V/2 in layer 1 and −V/2
in layer 2. The asymmetry between B1 and A2 sites can
be understood with the two-band continuum model, valid
for vF p, V � t⊥. Defining the LDOS as ρB1/A2(E) =
1
Nc

∑
k |φB1/A2,k|2δ(E − Ek), where	k = (φB1,k, φA2,k) is the

two-component wavefunction obtained by diagonalizing (6),
we can readily arrive at the following expressions:

ρB1/A2(E) = 1

2
√

3π

t⊥
t2

sgn (E)
E ± V/2√
E2 − V 2/4

. (25)

The asymmetric behaviour is apparent, with ρB1(E) diverging
for E → V/2+ and ρA2(E) for E → −V/2−. The result for
ρA2(E) is shown in figure 6(c) for V � {0.87, 4.23, 7.87} ×
10−3t and t⊥ = 0.1t . Within the screening corrected parallel
plate capacitor model discussed in section 3.2, these V values
correspond to carrier densities n � {0.2, 0.8, 1.4}×1012 cm−2,
respectively, where we have used t � 3.1 eV, n0 = 0, and
εr = 1. The full lines are the recursive Green’s function
method [71] results and dashed lines are the results of (25). As
expected, the closer to the gap edges, the better the agreement
between the two approaches.

A strong suppression of electrical noise in BLG has been
reported recently by Lin and Avouris [74]. For devices made
from exfoliated BLG on top of SiO2, the current fluctuations
are thought to originate from the fluctuating trapped charges in
the oxide. Therefore, the more effective the impurity charge

Figure 6. ((a), (b)) LDOS of BLG at A1/B1 and A2/B2 sites,
respectively, for V = 0.05t and t⊥ = 0.1t . The total DOS is shown
as a full line. (c) LDOS at A2 sites for n � {0.2, 0.8, 1.4} ×
1012 cm−2 and t⊥ = 0.1t . Full lines stand for numerical results and
dashed lines for (25). (d) LDOS at EF versus n for BLG and SLG.

screening in the system, the lower the electrical noise. Having
lower noise in BLG than in SLG may then be attributed to
the low energy finite DOS in the former. However, it has also
been reported in [74] that while increasing the carrier density
in SLG leads to lower noise, as expected due to the more
effective impurity screening, it results in higher noise in BLG.
Insight into this behaviour is achieved by analysing the LDOS
at the Fermi level EF in a biased BLG, as charging the system
through the back gate Vg leads to a finite perpendicular electric
field. In figure 6(e) we show the biased BLG LDOS at EF for
B1 and A2 sites as a function of carrier density n in the system.
For a given n, the electrostatic energy difference V is evaluated
self-consistently through (20), with n0 = 0 and εr = 1, and EF

is obtained by integrating over the DOS. Additionally, we use
t � 3 eV and t⊥ = 0.1t . We have chosen densities in the
range n ∈ [0 − 2] × 1012 cm−2, which corresponds to back
gate voltages Vg ∈ [0−27] eV through (14), which is similar
to the experimental range in [74]. The main observation to be
made as regards the results of figure 6(e) is that for the low
energy active sublattices B1 and A2 the LDOS at EF remains
approximately constant with increasing electron density, as
opposed to the ∼√

n dependence found in SLG. This is an
indication that impurity screening may not be increasing with
carrier density in the biased BLG system, which may be
contributing to enhanced electrical noise.

4. Magnetic field effects

In the biased BLG system, as a consequence of the gapped
band structure discussed in section 3, a perpendicular magnetic
field is expected to induce distinct features in electronic
properties. In this section we focus on the cyclotron mass
(semi-classical approach) and on the cyclotron resonance
(quantum regime) comparing the theory with experimental
results.
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4.1. The cyclotron mass

In the semi-classical approximation the cyclotron effective
mass mc is given by

mc = h̄2

2π

∂A(E)

∂E

∣∣∣
E=EF

, (26)

where A(E) is the k-space area enclosed by the orbit of
energy E , and the derivative is evaluated at the Fermi energy
EF [75–77]. It can be accessed experimentally through the
Shubnikov–de Haas effect, providing a direct probe to the
Fermi surface. In the case of exfoliated graphene, either SLG
or (un)biased BLG, the Fermi energy can be varied by tuning
the back gate voltage, and therefore a significant portion of the
whole band structure may be unveiled. In particular for the
biased BLG, the presence of a finite gap can be checked and
the model developed in section 3 tested.

4.1.1. Comparison with experiment. General expressions for
mc obtained for the full tight-binding bands (7), valid for the
relevant parameter range V � t⊥ � t and restricted to EF < t ,
are given in appendix C. In figure 7(a) we compare the theory
results for the cyclotron mass with experimental measurements
on the biased BLG system shown in the left panel of figure 2(a).
We have only considered mc associated with low energy bands
E±−

k (see (7)), since E±+
k are inactive for the experimentally

available carrier densities. The dashed lines stand for the
unscreened result, where V is given by (15), and the solid lines
are the screened result, with V given by (20). The inter-layer
coupling t⊥ has been taken as an adjustable parameter, keeping
all others fixed: t � 3 eV, εr = 1, and n0 = 1.8 × 1012 cm−2.
The value of t⊥ could then be chosen such that theory and
experiment gave the same mc for n = 2n0 ≈ 3.6 × 1012 cm−2.
As discussed in section 3.2.2, at this particular density the gap
closes, meaning that the theoretical value becomes independent
of the screening assumptions. We found t⊥ ≈ 0.22 eV, in good
agreement with values found in the literature. The theoretical
dependence mc(n) agrees well with the experimental data for
the case of electron doping. Also, as seen in figure 7(a),
the screened result provides a somewhat better fit than the
unscreened model, especially at low electron densities. This
fact, along with the good agreement found for the electrostatic
energy difference data of [8] (see figure 3(c)), allows us to
conclude that for doping of the same sign from both sides of
bilayer graphene, the gap is well described by the screened
approach. In the hole doping region in figure 7(a), the Hartree
approach underestimates the value of mc whereas the simple
unscreened result overestimates it. This can be attributed to
the fact that the Hartree theory used here is reliable only if the
gap is small compared to t⊥. In the experimental realization
of [10], n0 > 0 and, therefore, the theory works well for a wide
range of electron doping n > 0, whereas even a modest overall
hole doping n < 0 corresponds to a significant electrostatic
difference between the two graphene layers. In this case, the
unscreened theory overestimates the gap whereas the Hartree
calculation underestimates it.

In figure 7(b) we compare our best fit to the cyclotron
mass (full line) with results obtained for different parameter

Figure 7. Cyclotron mass versus n, normalized to the free electron
mass, me. (a) Solid lines are the result of the self-consistent
procedure and the dashed lines correspond to the unscreened case;
t � 3 eV, t⊥ � 0.22 eV, εr = 1, and n0 = 1.8 × 1012 cm−2. Circles
are experimental data from [10]. (b) The screened result in (a) is
compared with the result for εr = 2, the case without chemical
doping (n0 = 0), and the case where the external field is zero
(V = 0).

values. The dashed–dotted lines stand for mc obtained with
εr = 2 in (20). As can be seen clearly, the n > 0 result is not
substantially affected, while for n < 0 the theory description
of mc worsens. This is due to the reduction of the gap when εr

is increased (see the left inset in figure 3(d)). The dashed lines
in figure 7(b) are obtained with n0 = 0, where the zero gap
occurs at the neutrality point. The dotted lines are the result
for Eext = 0 = V , i.e., zero gap at every density value. Note
that these two results, n0 = 0 and V = 0, show an electron–
hole symmetric mc, contradicting the experimental result. It
may then be said that the electron–hole asymmetry observed
in mc is a clear indication of the presence of a finite gap in the
spectrum. It will be shown in section 4.1.3 that, if we ignore
the gap, this electron–hole asymmetry cannot be described by
taken into account t ′, γ4 or �.

4.1.2. The cyclotron mass in continuum models. Here we
compare our results for the cyclotron mass, which has been
obtained with expressions shown in appendix C, with the
results of continuum models.

Within the four-band continuum model given by (5),
where the dispersion is just the full tight-binding result (7) with
the substitution εk → vF p, we can easily derive the following
analytical expression for mc:

mc = EF

v2
F

⎡

⎣1 + V 2 + t2
⊥

2
√

E2
F(V

2 + t2
⊥)− t2

⊥V 2/4

⎤

⎦ . (27)

In figure 8(a) the dashed line is the result of (27), where
V has been computed self-consistently using (20) and the
four-band continuum approximation discussed in section 3.2.3.
As expected, the agreement with the full tight-binding result
(shown as a full line) is excellent for the densities considered.
Note that there is an extra solution given by m̃cv

2
F = EF[1 −

(V 2 + t2
⊥)/
√

4E2
F(V

2 + t2
⊥)− t2

⊥V 2], valid when |EF| < V/2

or |EF| >

√
V 2/4 + t2

⊥, which corresponds to the extra
orbit appearing when EF falls in the Mexican hat region, or
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Figure 8. Cyclotron mass versus n, normalized to the free electron
mass, me. (a) Comparison between full tight-binding (TB) and
four-band approximation, for t⊥ � 0.22 eV and
n0 = 1.8 × 1012 cm−2. ((b), (c)) Effect of finite t ′ and γ4 for n0 = 0
(b) and n0 = 1.8 × 1012 cm−2 (c): the dotted line is for t ′ � 0.3 eV
and t⊥ � 0.22 eV; the dashed line is for γ4 � 0.12 eV and
t⊥ � 0.19 eV; the full thin line is for t ′ = γ4 = 0 and t⊥ = 0.22 eV.
(d) Effect of � for γ4 � 0.12 eV and t⊥ � 0.19 eV: the full line is
for� � 0.03 eV; the dotted–dashed line is for� � −0.03 eV; the
dashed line is for� = 0. Circles are experimental data from [10].
We have used t � 3 eV and εr = 1.

above the bottom of high energy bands. We can estimate
the densities for which these two regions start playing a role:
using V ∼ 0.1t⊥ ∼ 0.01t in the Mexican hat region (valid
for n0 � 2 × 1012 cm−2) we get n � 1011 cm−2; setting
V ∼ t⊥ ∼ 0.1t around the bottom of high energy bands we
get n � 1013 cm−2. These two density values are outside the
range of experimentally realized densities (see figure 7(a)).

4.1.3. The effect of electron–hole asymmetry. In section 3.2.4
the effect of electron–hole symmetry breaking parameters—
namely, t ′, γ4, and �—has been studied as regards the self-
consistent description of the gap. Here we extend the analysis
to the cyclotron mass, restricting ourselves to the biased BLG
device shown in the left panel of figure 2(a). Results have
been obtained within the four-band model. As all cases have
cylindrical symmetry around K and K′, the cyclotron mass may
be written as mc = pF/(∂EF/∂pF).

In figure 8(b) we show the mc result for finite t ′ (dotted
red line) and finite γ4 (dashed blue line), keeping n0 = 0 (the
absence of electron–hole asymmetry due to chemical doping).
The thin full line is the result obtained for t ′ = γ4 = 0
in section 4.1.1, and circles are experimental data from [10].
The n > 0 region, where the smaller gaps are realized
experimentally, is still well fitted if we choose t⊥ � 0.22 eV
with t ′ � 0.3 eV or t⊥ � 0.19 eV with γ4 = 0.12 eV (we
use t � 3 eV). However, it is clear that neither of these
results can account for the electron–hole asymmetry observed
experimentally. In fact, a closer look reveals that mc for finite
t ′ have the opposite trend, being smaller than the t ′ = 0 result

for n < 0 and larger for n > 0, as would be expected by
inspection of the energy bands in figure 5(a). Such an opposite
trend should also be seen for finite γ4, although the effect is
not as large as expected from the considerable distortion of the
energy bands shown in figure 5(b). This attenuation can be
understood as the result of fixing the carrier density n and not
the Fermi energy EF: changing γ4 (or t ′) for a given n leads
to a different EF, and the new EF is such that it counteracts
the expected effect of γ4 (or t ′) in mc. Figure 8(c) shows the
same as (b) for n0 = 1.8 × 1012 cm−2. The effect of the on-
site energy � is shown in figure 8(d) for fixed γ4 � 0.12 eV,
t⊥ � 0.19 eV and n0 = 1.8×1012 cm−2. The result for� = 0
(dashed line) is shown along with the results for � � 0.03 eV
(full line) and � � −0.03 eV (dotted–dashed line). It is clear
that the effects of t ′, γ4 and � on the cyclotron mass can be
neglected.

4.2. Cyclotron resonance

The effect of a perpendicular magnetic field can be studied
within the continuum approximation through minimal coupling
p → p − eA [7]. The case of biased BLG has been studied
within both the four-band (5) and two-band (6) continuum
models in [12, 11, 36, 78]. Here we use the same approach to
study the cyclotron resonance (i.e. the Landau level transition
energies) with the extra ingredient that the parameter V
depends on the filling factor, as discussed in section 3.2.

In the four-band model standard manipulations
[7, 11, 36, 79] lead to the unbiased BLG Landau level spectrum

E±±
n = ±

√

(1 + 2n)
γ 2

2
+ t2

⊥
2

±
√
(γ 2 + t2

⊥)2/4 + nγ 2t2
⊥,

(28)
where γ = √

2vFh̄/ lB , with lB = √
h̄/|e|B for the

magnetic length. Non-zero (n � 1) eigenenergies are fourfold
degenerate due to valley and spin degeneracy, while zero-
energy Landau levels have eightfold degeneracy, since there
are two zero-energy Landau states (n = −1, 0) per valley per
spin. The two-band model result E±

n ≈ ±γ 2t−1
⊥

√
n(n + 1)

is easily recovered from (28) for γ � t⊥, being valid for
magnetic fields up to B ≈ 1 T [7].

The Landau level transition energies in BLG have
been recently obtained through cyclotron resonance measure-
ments [80]. The data were found to deviate from what would
be expected through (28), especially for larger filling factors.
It should be noted, however, that in order to keep a constant
filling factor and vary the magnetic field, as was done in [80],
the back gate voltage Vg has to be tuned to compensate for
the variation of the Landau level degeneracy. As we have
seen previously, tuning Vg is equivalent to changing V —the
electrostatic energy difference between layers—which means
that (28) is no longer valid, as recently shown within the four-
band continuum model [36]. To have an estimate for the effect
of the back gate voltage on the Landau level spacing we have
computed Landau level energy differences, taking into account
the variation of V with carrier density n. We have used the
unscreened result given by (15), with n0 = 0 and εr = 1.
Within this approximation we can easily write V in terms of the

11
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filling factor ν and magnetic field B as V = νBe2d/(2ε0φ0) ≈
7.4 × 10−4νB , with B in teslas in the last step. Thus, for
fixed filling factor, V varies linearly with B . Note that the
comparison between this unscreened treatment of the biased
BLG and the unbiased result (28) should give lower and upper
limits for the effect of the perpendicular external field in the
cyclotron frequency. In figure 9 we show the Landau transition
energies obtained versus magnetic field for the given filling
factors. The dashed lines represent the unbiased BLG result,
as given by (28). The lines with crosses are the results for the
unscreened biased BLG, and filled symbols are experimental
data from [80]: circles for ν > 0 and squares for ν < 0. We
have used t = 3.5 eV and t⊥ = 0.1t , consistent with [80].
As can be seen from figure 9, the back gate induced electric
field gives rise to sizable effects already for magnetic fields and
filling factors realized in experiments. Except at ν = ±8, the
result of (28) for the unbiased BLG and the unscreened biased
BLG result effectively provide upper and lower limits on the
experimental data. The observed electron–hole asymmetry
could then be interpreted as due to an asymmetry in V versus
n: larger V , and therefore larger gap, for n < 0; smaller V
and gap for n > 0, which would make the result closer to the
unbiased case. It should be noted that in such a case we would
expect the neutrality point to occur for Vg < 0, as is the case for
the NH3 doped BLG studied before. For the system reported
in [80], however, the opposite seems to be happening, as
indicated by the Hall resistivity. A neutrality point for Vg > 0
is, in fact, the more usual effect of H2O molecules adsorbed
on graphene samples [56]. As a final remark regarding the
results presented in figure 9, we note that the experimental
data trend, which makes (28) a poor fit at |ν| � 8, is still
not accounted for in the biased BLG result. An alternative
approach is the inclusion of the screening correction, which
should go beyond (19), including the magnetic field effect. It
has been reported recently that Dirac liquid renormalization
may also be contributing to the observed trend [81].

5. Conclusions

We have studied the electronic behaviour of bilayer graphene
in the presence of a perpendicular electric field—a biased
bilayer—using the minimal tight-binding model that describes
the system. The effect of the perpendicular electric field has
been included through a parallel plate capacitor model, with
screening correction at the Hartree level. We have compared
the full tight-binding description with its four-band and two-
band continuum approximations, and found that the four-band
model is always a suitable approximation for the conditions
realized in experiments. Also, we have studied the effect
of electron–hole asymmetry terms and found that they have
only a small effect on the electronic properties addressed here.
The model has been applied to real biased bilayer devices,
made out of either SiC [8] or exfoliated graphene [10, 9].
The good agreement with experimental results—namely, for
the electrostatic energy difference between layers obtained
through ARPES [8] and for the Shubnikov–de Haas cyclotron
mass [10]—clearly indicates that the model is capturing the key
ingredients, and that a finite gap is effectively being controlled

Figure 9. Landau level transition energies versus magnetic field for
the given filling factors. The dashed line is the unbiased BLG
result (28) and the line with crosses is the biased BLG result (see the
text). We used t = 3.5 eV and t⊥ = 0.1t . Filled symbols are
experimental data from [80]: circles for electrons and squares for
holes.

externally. Analysis of recent experimental results as regards
the electrical noise [74] and cyclotron resonance [80] further
suggests that the model can be seen as a good starting point for
understanding the electronic properties of graphene bilayers.
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Appendix A. Asymmetry between layers

In order to write (19) as an energy integral, we start by
introducing the SLG density of states per spin per unit cell
defined for the conduction band as

ρ(ε) = 1

Nc

∑

k

δ(ε − t|sk|), (A.1)

with sk as in (4). The momentum sum in (A.1) can be written
as an integral by letting Nc → ∞. The integration can be
performed and written in terms of complete elliptic integrals of
the first kind [5].

With the definition of ρ(ε) in (A.1) the charge imbalance
between layers in (19) can be written as �n = �n1/2 + �ñ,
where the charge imbalance at half-filling �n1/2 is given by

�n1/2 = 2

A�
∑

l=±

∫ 3t

0
dε ρ(ε)I−l(ε), (A.2)
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and the fluctuation �ñ with respect to the half-filled case is
given by

�ñ = 2

A�

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

l=±

∫ ε2

ε1

dε ρ(ε)I+l(ε), n > 0

−
∑

l=±

∫ ε2

ε1

dε ρ(ε)I−l(ε), n < 0,
(A.3)

where n is the carrier density with respect to half-filling. The
integral kernel in (A.2) and (A.3) reads

I jl(ε) = [ε2+K j l
− (ε)][ε2−K jl

+ (ε)]2−[ε2+K jl
+ (ε)]t2

⊥K jl
− (ε)

[ε2+K j l
− (ε)][ε2−K jl

+ (ε)]2+[ε2+K jl
+ (ε)]t2

⊥K jl
− (ε)

,

(A.4)
where K j l

± (ε) = [V/2 ± E jl(ε)]2, with E jl(ε) given by (7)
with the substitution εk → ε. The limits of integration
in (A.3) depend on the band label l and EF as follows: with
l = − we have ε1 = ε− and ε2 = ε+ for E2

F < V 2/4,
while for E2

F > V 2/4 we have ε1 = 0 and ε2 = ε+; with
l = + we only have contribution for E2

F > t2
⊥ + V 2/4, and

the limits are ε1 = 0 and ε2 = ε−. We use the notation

ε± = [E2
F + V 2/4 ±

√
E2

F(V
2 + t2

⊥)− t2
⊥V 2/4] 1

2 .

Appendix B. The bilayer DOS

The DOS per unit cell of BLG, either biased or unbiased, is
defined as

ρ2(E) = 2

Nc

∑

k

[δ(E − E±−
k )+ δ(E − E±+

k )], (B.1)

where E±±
k is given by (7). Equation (B.1) can be written

as a sum of two contributions, ρ2(E) = ∑
l=± ρ

l
2(E), where

the label l = ± stands for contributions coming from bands
E±l

k . For the experimentally relevant case where α = (V 4/4 +
t2
⊥V 2/2)/(V 2 + t2

⊥) < t2 the analytical expressions for each
contribution read

ρ−
2 (E) = 4

t2π2
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψ−−(E)F−(E), �g/2 < |E | < V/2

+
ψ−+(E)F+(E), �g/2 < |E | < E+−(t)
ψ−+(E)G+(E), E+−(t) < |E | < E+−(3t)

(B.2)

and

ρ+
2 (E) = 4

t2π2

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ψ+−(E)F−(E),
√

t2
⊥ + V 2/4 < |E | < E++(t)

ψ+−(E)G−(E),
E++(t) < |E | < E++(3t),

(B.3)
with

F l(E) = χ l(E)√
F[χ l(E)/t]K

(
4χ l(E)/t

F[χ l(E)/t]
)

(B.4)

Gl(E) = χ l(E)√
4χ l(E)/t

K
(

F[χ l(E)/t]
4χ l(E)/t

)
, (B.5)

and with ψ±l (E) given by

ψ±l(E) =
Ll(E)

√
χ l(E)2 + t2

⊥/2 + V 2/4 ± Ll(E)

χ l(E)
∣∣Ll(E)± (t2

⊥ + V 2)/2
∣∣ , (B.6)

where Ll(E) = [t4
⊥/4 + (t2

⊥ + V 2)χ l(E)2]1/2, and where
χ±(E) is as in the right-hand side of (22) with EF → E . We
use F(x) = (1+ x)2 − (x2 −1)2/4 and K(m) for the complete
elliptic integral of the first kind, and E±±(x) is given by (7)
with the substitution εk → x .

Appendix C. The cyclotron mass

On the basis of the full tight-binding band structure E±±
k

given in (7) it is possible to derive general expressions for
the cyclotron mass (26). The key observation is that the area
of a closed orbit at the Fermi level A(EF) may be written as
A(EF) ∝ ∑′

k�k, where the prime means summation over
all ks inside the orbit, and �k = (2π)2/(Nc A�) is the area
per k-point in the first BZ. The cyclotron mass may then be
written as mc ∝ ∂EF

∑
i ξi
∫ EF

Ei
dE

∑
k δ(E −Eμν

k )�(ε±−εk),

where εk is the SLG dispersion, ξi = ±, and ε± = [E2
F +

V 2/4±
√

E2
F(V

2 + t2
⊥)− t2

⊥V 2/4] 1
2 . The integration limits Ei ,

the sign ξi = ±, and the choice between the two possibilities
ε± depend on the particular band and on the position of the
Fermi level. Skipping the details of the derivation, what is
worth noting is that, due to the sum of delta functions in
the previous expression for mc, the result has a mathematical
structure similar to those of the derived expressions for the
DOS of BLG (see appendix B). The cyclotron effective mass of
the biased BLG for the relevant parameter range V � t⊥ � t
and |EF| � t is then given by

mc(EF) = h̄2

A�t2

2

π

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ψ−−(EF)F−(EF),

�g/2 < |EF| < V/2

ψ−+(EF)F+(EF),

�g/2 < |EF| � t

ψ+−(EF)F−(EF),√
t2
⊥ + V 2/4 < |EF| � t,

(C.1)
with F l(EF) as in (B.4).
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[53] Mañes J L, Guinea F and Vozmediano M A H 2007 Phys. Rev.
B 75 155424

[54] Zhou S Y, Siegel D A, Fedorov A V and Lanzara A 2008 Phys.
Rev. Lett. 101 086402

[55] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature
438 201–4

[56] Schedin F, Geim A K, Morozov S V, Hill E W, Blake P,
Katsnelson M I and Novoselov K S 2007 Nat. Mater.
6 652–5

[57] Moser J, Verdaguer A, Jimenez D, Barreiro A and
Bachtold A 2008 Appl. Phys. Lett. 92 123507

[58] Ribeiro R M, Peres N M R, Coutinho J and Briddon P R 2008
Phys. Rev. B 78 075442

[59] Boukhvalov D W and Katsnelson M I 2008 Phys. Rev. B
78 085413

[60] de Heer W A, Berger C, Wu X, First P N, Conrad E H, Li X,
Li T, Sprinkle M, Hass J, Sadowski M L, Potemski M and
Martinez G 2007 Solid State Commun. 143 92–100

[61] Varchon F, Feng R, Hass J, Li X, Nguyen B N, Naud C,
Mallet P, Veuillen J Y, Berger C, Conrad E H and
Magaud L 2007 Phys. Rev. Lett. 99 126805

[62] Mattausch A and Pankratov O 2007 Phys. Rev. Lett. 99 076802
[63] Kim S, Ihm J, Choi H J and Son Y W 2008 Phys. Rev. Lett.

100 176802
[64] Varchon F, Mallet P, Veuillen J Y and Magaud L 2008 Phys.

Rev. B 77 235412
[65] Mallet P, Varchon F, Naud C, Magaud L, Berger C and

Veuillen J Y 2007 Phys. Rev. B 76 041403
[66] Rutter G M, Guisinger N P, Crain J N, Jarvis E A A,

Stiles M D, Li T, First P N and Stroscio J A 2007 Phys. Rev.
B 76 235416

[67] Brar V W, Zhang Y, Yayon Y, Bostwick A, Ohta T,
McChesney J L, Horn K, Rotenberg E and Crommie M F
2007 Appl. Phys. Lett. 91 122102

[68] Jang C, Adam S, Chen J H, Williams E D, Das Sarma S and
Fuhrer M S 2008 Phys. Rev. Lett. 101 146805

[69] Kusminskiy S V, Nilsson J, Campbell D K and
Castro Neto A H 2008 Phys. Rev. Lett. 100 106805

[70] Tersoff J and Hamann D R 1985 Phys. Rev. B 31 805–13
[71] Haydock R 1980 The recursive solution of the Schrödinger

equation Solid State Physics vol 35 ed H Ehrenreich,
F Seitz and D Turnbull (New York: Academic) p 215

[72] Wang Z F, Li Q, Su H, Wang X, Shi Q W, Chen J, Yang J and
Hou J G 2007 Phys. Rev. B 75 085424

[73] Bena C 2008 Phys. Rev. Lett. 100 076601
[74] Lin Y M and Avouris P 2008 Nano Lett. 8 2119
[75] Lifshitz I M and Kaganov M I 1980 Geometric concepts in the

electron theory of metals Electrons at the Fermi Surface ed
M Springford (Cambridge: Cambridge University Press)
chapter 1, pp 3–45

[76] Landau L D and Lifshitz I M 1980 Statistical Physics Part 2
vol 9 (Oxford: Pergamon)

[77] Ziman J M 1972 Principles of the Theory of Solids 2nd edn
(Cambridge: Cambridge University Press)

[78] Misumi T and Shizuya K 2008 Phys. Rev. B 77 195423
[79] Nakamura M, Hirasawa L and Imura K I 2008 Phys. Rev. B

78 033403
[80] Henriksen E A, Jiang Z, Tung L C, Schwartz M E, Takita M,

Wang Y J, Kim P and Stormer H L 2008 Phys. Rev. Lett.
100 087403

[81] Kusminskiy S V, Campbell D K and Castro Neto A H 2009
Europhys. Lett. 85 58005

14

http://dx.doi.org/10.1038/nmat2082
http://dx.doi.org/10.1103/PhysRevLett.99.216802
http://dx.doi.org/10.1103/PhysRevB.73.245426
http://dx.doi.org/10.1103/PhysRevB.74.161403
http://dx.doi.org/10.1103/PhysRevB.75.155115
http://dx.doi.org/10.1016/j.ssc.2007.02.013
http://dx.doi.org/10.1103/PhysRevB.75.235433
http://dx.doi.org/10.1103/PhysRevLett.102.256405
http://dx.doi.org/10.1038/nature08105
http://dx.doi.org/10.1103/PhysRevLett.97.266801
http://dx.doi.org/10.1103/PhysRevLett.100.016602
http://dx.doi.org/10.1103/PhysRevB.73.245403
http://dx.doi.org/10.1140/epjb/e2006-00203-1
http://dx.doi.org/10.1140/epjb/e2006-00294-6
http://dx.doi.org/10.1103/PhysRevB.75.033405
http://dx.doi.org/10.1103/PhysRevLett.99.066802
http://dx.doi.org/10.1103/PhysRevB.75.045322
http://dx.doi.org/10.1016/j.ssc.2007.02.043
http://dx.doi.org/10.1103/PhysRevB.76.165416
http://dx.doi.org/10.1021/nl062967s
http://dx.doi.org/10.1103/PhysRevLett.98.126801
http://dx.doi.org/10.1002/pssb.200674604
http://dx.doi.org/10.1103/PhysRevB.78.045405
http://dx.doi.org/10.1103/PhysRevLett.99.256802
http://dx.doi.org/10.1103/PhysRevLett.100.125504
http://dx.doi.org/10.1103/PhysRevB.75.115425
http://dx.doi.org/10.1103/PhysRevLett.100.186803
http://dx.doi.org/10.1103/PhysRevB.76.115419
http://dx.doi.org/10.1103/PhysRevB.77.235415
http://dx.doi.org/10.1088/0953-8984/21/10/102202
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1103/PhysRevB.15.4077
http://dx.doi.org/10.1143/JPSJ.47.199
http://dx.doi.org/10.1103/PhysRevB.43.4579
http://dx.doi.org/10.1103/PhysRev.108.612
http://dx.doi.org/10.1103/PhysRev.109.272
http://dx.doi.org/10.1103/PhysRevB.73.125411
http://dx.doi.org/10.1103/PhysRevB.74.075404
http://dx.doi.org/10.1103/PhysRevB.80.165406
http://dx.doi.org/10.1103/PhysRevB.78.235408
http://dx.doi.org/10.1103/PhysRevLett.102.037403
http://dx.doi.org/10.1103/PhysRevB.66.035412
http://dx.doi.org/10.1103/PhysRevB.73.214418
http://dx.doi.org/10.1103/PhysRevB.75.155424
http://dx.doi.org/10.1103/PhysRevLett.101.086402
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1038/nmat1967
http://dx.doi.org/10.1063/1.2898501
http://dx.doi.org/10.1103/PhysRevB.78.075442
http://dx.doi.org/10.1103/PhysRevB.78.085413
http://dx.doi.org/10.1016/j.ssc.2007.04.023
http://dx.doi.org/10.1103/PhysRevLett.99.126805
http://dx.doi.org/10.1103/PhysRevLett.99.076802
http://dx.doi.org/10.1103/PhysRevLett.100.176802
http://dx.doi.org/10.1103/PhysRevB.77.235412
http://dx.doi.org/10.1103/PhysRevB.76.041403
http://dx.doi.org/10.1103/PhysRevB.76.235416
http://dx.doi.org/10.1063/1.2771084
http://dx.doi.org/10.1103/PhysRevLett.101.146805
http://dx.doi.org/10.1103/PhysRevLett.100.106805
http://dx.doi.org/10.1103/PhysRevB.31.805
http://dx.doi.org/10.1103/PhysRevB.75.085424
http://dx.doi.org/10.1103/PhysRevLett.100.076601
http://dx.doi.org/10.1021/nl080241l
http://dx.doi.org/10.1103/PhysRevB.77.195423
http://dx.doi.org/10.1103/PhysRevB.78.033403
http://dx.doi.org/10.1103/PhysRevLett.100.087403
http://dx.doi.org/10.1209/0295-5075/85/58005

	1. Introduction
	2. The model
	3. Bulk electronic properties
	3.1. The electronic structure
	3.2. Screening of the external field
	3.3. The DOS and LDOS

	4. Magnetic field effects
	4.1. The cyclotron mass
	4.2. Cyclotron resonance

	5. Conclusions
	Acknowledgments
	Appendix A. Asymmetry between layers
	Appendix B. The bilayer DOS
	Appendix C. The cyclotron mass
	References

